3.503 \(\int \frac{x^3}{\sqrt{1+x} \sqrt{1-x+x^2}} \, dx\)

Optimal. Leaf size=142 \[ \frac{2 x \left (x^3+1\right )}{5 \sqrt{x+1} \sqrt{x^2-x+1}}-\frac{4 \sqrt{2+\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{5 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}} \]

[Out]

(2*x*(1 + x^3))/(5*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (4*Sqrt[2 + Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + S
qrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(5*3^(1/4)*Sqrt[(1 + x)
/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0472602, antiderivative size = 142, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {915, 321, 218} \[ \frac{2 x \left (x^3+1\right )}{5 \sqrt{x+1} \sqrt{x^2-x+1}}-\frac{4 \sqrt{2+\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{5 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/(Sqrt[1 + x]*Sqrt[1 - x + x^2]),x]

[Out]

(2*x*(1 + x^3))/(5*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (4*Sqrt[2 + Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + S
qrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(5*3^(1/4)*Sqrt[(1 + x)
/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

Rule 915

Int[((g_.)*(x_))^(n_)*((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((d
 + e*x)^FracPart[p]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(g*x)^n*(a*d + c*e*x^3)^p,
 x], x] /; FreeQ[{a, b, c, d, e, g, m, n, p}, x] && EqQ[m - p, 0] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{x^3}{\sqrt{1+x} \sqrt{1-x+x^2}} \, dx &=\frac{\sqrt{1+x^3} \int \frac{x^3}{\sqrt{1+x^3}} \, dx}{\sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2 x \left (1+x^3\right )}{5 \sqrt{1+x} \sqrt{1-x+x^2}}-\frac{\left (2 \sqrt{1+x^3}\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx}{5 \sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2 x \left (1+x^3\right )}{5 \sqrt{1+x} \sqrt{1-x+x^2}}-\frac{4 \sqrt{2+\sqrt{3}} \sqrt{1+x} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{5 \sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1-x+x^2}}\\ \end{align*}

Mathematica [C]  time = 0.617742, size = 169, normalized size = 1.19 \[ \frac{6 x \sqrt{x+1} \left (x^2-x+1\right )-\frac{2 i (x+1) \sqrt{1+\frac{6 i}{\left (\sqrt{3}-3 i\right ) (x+1)}} \sqrt{6-\frac{36 i}{\left (\sqrt{3}+3 i\right ) (x+1)}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{\sqrt{3}+3 i}}}{\sqrt{x+1}}\right ),\frac{\sqrt{3}+3 i}{-\sqrt{3}+3 i}\right )}{\sqrt{-\frac{i}{\sqrt{3}+3 i}}}}{15 \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/(Sqrt[1 + x]*Sqrt[1 - x + x^2]),x]

[Out]

(6*x*Sqrt[1 + x]*(1 - x + x^2) - ((2*I)*(1 + x)*Sqrt[1 + (6*I)/((-3*I + Sqrt[3])*(1 + x))]*Sqrt[6 - (36*I)/((3
*I + Sqrt[3])*(1 + x))]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I -
Sqrt[3])])/Sqrt[(-I)/(3*I + Sqrt[3])])/(15*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Maple [B]  time = 1.324, size = 248, normalized size = 1.8 \begin{align*}{\frac{2}{5\,{x}^{3}+5}\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( i\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) \sqrt{3}-3\,\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) +{x}^{4}+x \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(1+x)^(1/2)/(x^2-x+1)^(1/2),x)

[Out]

2/5*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(I*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2*
x-1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3))^(1
/2))*3^(1/2)-3*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2*x-1+I*3^(1/2))/(I*3^
(1/2)-3))^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3))^(1/2))+x^4+x)/(x^3+1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{x^{2} - x + 1} \sqrt{x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/(sqrt(x^2 - x + 1)*sqrt(x + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{2} - x + 1} \sqrt{x + 1} x^{3}}{x^{3} + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^2 - x + 1)*sqrt(x + 1)*x^3/(x^3 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{x + 1} \sqrt{x^{2} - x + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(1+x)**(1/2)/(x**2-x+1)**(1/2),x)

[Out]

Integral(x**3/(sqrt(x + 1)*sqrt(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{x^{2} - x + 1} \sqrt{x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^3/(sqrt(x^2 - x + 1)*sqrt(x + 1)), x)